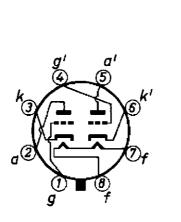
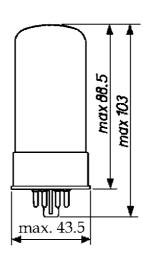
S.Q. TUBE


Special quality double triode designed for use as series regulator tube in d.c. power supplies, in servo application and as booster triode.


QUICK REFERENCE DATA			
Life test	500 hours		
Mechanical quality	Shock and vibration resistant		
Base	Octal		
Heating	Indirect heater A. C. or D. C.; parallel supply		
Heater voltage	V_{f} 6.3 V		
Heater current	I _f 2.5 A		
Anode current	I _a 100 mA (each section)		
Mutual conductance	S 6.5 mA/V		
Internal resistance	R_i 300 Ω		

DIMENSIONS AND CONNECTIONS

Dimensions in mm

Base: Octal

CHARACTERISTICS

Each section if applicable

Column I Nominal value or setting of the tube

II Range values for equipment design: Initial spread

		I	II	
Heater voltage	$V_{\mathbf{f}}$	6.3		V
Heater current	I_f	2.5	2.26 -2.74	A
Anode voltage	v _a	100		V
Cathode resistor	R_k	300		Ω
Anode current	I_a	100		mA
Mutual conductance	S	6.5		mA/V
Amplification factor	μ	2.0		
Internal resistance	R _i	300		Ω
Anode supply volt age	v _{ba}	135		V
Cathode resistor	R_k	250		Ω
Anode current 1)	I_a	125	100 - 150	mA
Mutual conductance	S	7.0	5.8 - 8.2	mA/V
Amplification factor	μ	2.0	1.4- 2.6	
Internal resistance	R _i	280		Ω
Negative grid current (g connected to g')	-Ig		max. 4.0	μΑ

¹⁾ Max. duration 1s $\text{Operation with } W_a \text{ and } I_a \text{ at the absolute maximum limiting values}.$

3

CHARACTERISTICS (continued)	<u> </u>	I	II	
Vibrational noise output	V_{0}		max. 0.2	V _{rms}
Two sections in parallel	Ü			11110
Anode supply voltage V _{ba} = 135 V				
Grid voltage $-V_g = 7 \text{ V}$				
Anode resistor $R_a = 2 k\Omega$				
Vibration frequency = 25 Hz				
Acceleration = 2.5 g				
CAPACITANCES Each system if applica				
Anode to grid	C_{ag}	8.6		pF
Anode to cathode and heater	C _{a/kf}	2.5		pF
Grid to cathode and heater	$C_{g/kf}$	5.5		pF
Cathode to heater	C_{kf}	7.0		pF
Anode to other section Anode	C _{aa'}	2.2		pF
Grid to other section grid	$C_{gg'}$	0.5		pF

SHOCK AND VIBRATION RESISTANCE

The following test conditions are applied to assess the mechanical quality of the tube. These conditions are not intended to be used as normal operating conditions.

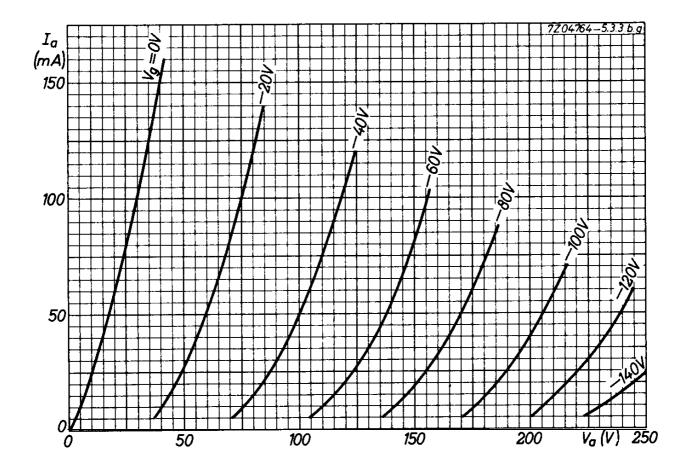
Shock

The tube is subjected 5 times in each of 4 positions to an acceleration of 500 g supplied by an NRL shock machine with the hammer lifted over an angle of 30°.

Vibration

The tube is subjected during 32 hours in each of 3 positions to a vibration frequency of 25 Hz with an acceleration of 2.5 g.

LIFE


Production samples: are tested during 500 hours.

December 1968

LIMITING VALUES (Absolute maximum	rating system)	
Anode voltage	v _{ao}	max. 550 V
	V_a	max. 250 V
Anode inverse peak voltage Duty factor max. 0.15	V _{a invp}	max. 3 kV
Pulse duration max. 10 μs		
Cathode current	I_k	max. 125 mA
Grid peak voltage	-V _{gp}	max. 2.3 kV
Duty factor max. 0.15	CI	
Pulse duration max. 10 µs		
Anode dissipation	W_a	max. 13 W
Voltage between cathode and heater, peak	$V_{ m kfp}$	max. 300 V
Grid resistor Automatic bias	R_{g}	max. $1.0 \text{ M}\Omega$
Fixed bias	R_{g}	max. $100 \text{ k}\Omega$ 1)
Bulb temperature	^t bulb	max. 260 °C

¹⁾ With fixed bias the anode circuit should contain a protective resistance to provide a minimum drop of 15 V d.c. at the normal operating conditions. When two or more sections are used in parallel at dissipations approaching the rated maximum, separate anode and cathode resistors must be used to assist load sharing.

When combined fixed and automatic bias is used, the cathode bias portion should have a minimum value of 7.5 V d .c . at the normal operating conditions. R_g should then not exceed $100\,k\Omega.$

